Explicit solutions to hyper-Bessel integral equations of second kind
نویسندگان
چکیده
منابع مشابه
Numerical solutions of fuzzy nonlinear integral equations of the second kind
In this paper, we use the parametric form of fuzzy numbers, and aniterative approach for obtaining approximate solution for a classof fuzzy nonlinear Fredholm integral equations of the second kindis proposed. This paper presents a method based on Newton-Cotesmethods with positive coefficient. Then we obtain approximatesolution of the fuzzy nonlinear integral equations by an iterativeapproach.
متن کاملA Stochastic algorithm to solve multiple dimensional Fredholm integral equations of the second kind
In the present work, a new stochastic algorithm is proposed to solve multiple dimensional Fredholm integral equations of the second kind. The solution of the integral equation is described by the Neumann series expansion. Each term of this expansion can be considered as an expectation which is approximated by a continuous Markov chain Monte Carlo method. An algorithm is proposed to sim...
متن کاملMonte Carlo Simulation to Solve the Linear Volterra Integral Equations of The Second Kind
This paper is intended to provide a numerical algorithm based on random sampling for solving the linear Volterra integral equations of the second kind. This method is a Monte Carlo (MC) method based on the simulation of a continuous Markov chain. To illustrate the usefulness of this technique we apply it to a test problem. Numerical results are performed in order to show the efficiency and accu...
متن کاملMultiwavelets for Second-kind Integral Equations
Abstract. We consider a Galerkin method for an elliptic pseudodifferential operator of order zero on a two-dimensional manifold. We use piecewise linear discontinuous trial functions on a triangular mesh and describe an orthonormal wavelet basis. Using this basis we can compress the stiffness matrix from N to O(N logN) nonzero entries and still obtain (up to logN terms) the same convergence rat...
متن کاملGalerkin Methods for Second Kind Integral Equations
This paper discusses the numerical solution of Fredholm integral equations of the second kind which have weakly singular kernels and inhomogeneous terms. Global convergence estimates are derived for the Galerkin and iterated Galerkin methods using splines on arbitrary quasiuniform meshes as approximating subspaces. It is observed that, due to the singularities present in the solution being appr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 1999
ISSN: 0898-1221
DOI: 10.1016/s0898-1221(98)00243-0